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Abstract

This paper focuses on the vibration phenomena involved during friction contact and which lead to
squealing noise. The simulation uses an explicit dynamic finite element method to describe the vibration of
a pad brought into contact with a beam at constant velocity. In particular it describes a study on the
influence of certain parameters on the occurrence of instability on pad and beam vibration. These
parameters are beam velocity, the external force applied to the pad, the Coulomb friction coefficient, the
pad’s dimensions and Young modulus. The mechanism leading to the occurrence of squealing noise and
unstable pad mode causing the onset of instability are shown. The vibration structure displays periodic
peaks corresponding to the occurrence of impacts at the interface generated by steady-self pulse
propagation.
r 2005 Published by Elsevier Ltd.
1. Introduction

The specific characteristics expected of brakes are a high and stable friction coefficient, low disc
wear and low pad wear. During braking, special attention is given to vibration that could be the
source of excess stress and noise. Noise, up till now hidden by background noise, is currently a
major field of automobile and railway research. Squealing noise is a high frequency vibration
see front matter r 2005 Published by Elsevier Ltd.
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(1–20 kHz) characterized by a pure and strident sound of strong intensity that has been the subject
of much research. However, little is known about the friction mechanisms that start in the braking
system or the different couplings that link the elements of the ‘‘tribological triplet’’ [1–3], namely
the mechanism formed by the two first bodies in contact and the third body, composed of wear
particles trapped in the contact. These elements enable us to understand and predict the source of
the noise. Brake squealing is due to the occurrence of dynamic instability generated at the surface
of the two bodies in friction. Different theories and models have been proposed that rely on
phenomena such as the ‘‘stick–slip’’ phenomenon, which was the first type of instability to be
discovered [4]. Modal studies have been performed [5–7], some of which have dealt with the
‘‘sprag–slip’’ phenomenon [8–13]. These models, which have one or many degrees of freedom, are
used to explain and simulate the occurrence of dynamic instability. Akay [14] has reviewed the
work carried out on vibrations caused by friction between two bodies in relative movement.
Moreover, Adams [15,16], Simões [17], and Rice [18,19] have analysed the presence of instabilities
characterized by the existence of steady-self pulses on the contact surface. They have shown that
two bodies in contact and in relative movement can display dynamically unstable behaviour
expressed in the form of waves propagating on the interface zone of the two bodies. These waves
depend on the characteristics of the two bodies in contact. Applied load and velocity are
important parameters of the system’s behaviour. Nguyen [20] and Oueslati [21,22] performed a
numerical 2D study of the transition of the response of a dry Coulomb contact into a steady-self
pulse solution that takes the form of stick–slip–separation waves propagating on the contact
surface.
This paper describes the use of a finite element simulation, based on the laboratory’s PLAST3

code in explicit dynamic formulation, to study the instabilities at the contact zone of the two
bodies in friction. We focus in particular on the coupling between the two first bodies (pad and
beam) and the third body which is taken into account in the simulations by a Coulomb friction
coefficient. The models considered and analysed are simplifications of a complete braking system
[23]. The disc/pad braking system has been replaced by a model with a beam and a parallelepiped
body (pad) (Fig. 1). This study presents the influence of the following parameters: Young’s
modulus, velocity, pad dimensions, force applied to the pad, friction coefficient, occurrence of
instabilities. The results were subjected to time and frequency analysis and show that the
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Fig. 1. Finite element simulation of pad friction on a moving beam.
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characteristics of the acceleration spectra are periodic in frequency while their harmonic range is
linked to separation between the pad and beam contact surfaces.
2. PLAST3 formulation

PLAST3 in (3D) [24,25], an explicit dynamic finite element code, is used to simulate the
behaviour of the first bodies (pad and beam) during frictional contact. PLAST3 is designed for
large deformations and nonlinear material behaviour and uses a forward Lagrange multiplier
method [26] for the contact between deformable bodies. For the dynamic study, the formulation is
discretized spatially by using the finite element method and discretized temporally by using the b2
method. The contact algorithm uses slave nodes (situated on the pad contact surface) and target
surfaces (on the beam) described by four-node quadrilateral elements, since the 3D element used is
an isoparametric hexahedra. An elementary target surface defined by four nodes is broken down
into a bi-cubic Ferguson patch with C1 continuity across the adjacent boundary [23].
The equation of the forward increment Lagrange multiplier method is constructed using

equations of motion developed via the principle of a virtual work equation at time step tn

ðtn ¼ nDtÞ and the displacement constraints acting on the surfaces in contact at time tnþ1

M€un þ Kun þGT
nþ1kn ¼ rn,

Gnþ1fxn þ unþ1 � ungp0, ð1Þ

where kn is the contact force vector acting on the nodes of the slave surface, Gnþ1 is the global
assembled matrix of the elementary matrices of the constraints, xnþ1 ¼ xn þ unþ1 � un is the
coordinate vector at time tnþ1, M is the mass matrices, and rn is the nodal vectors of external
forces. At any time step, the velocity _un and acceleration €un vectors are related to displacements
and time increment Dt in accordance with the b2 method ðb2 2 ½0:5; 1�Þ

€un ¼
2

Dt2
ðunþ1 � un � Dt_unÞ,

_un ¼
1

1þ 2b2
_un�1 þ Dtð1� b2Þ€un�1 þ

2b2
Dt
ðunþ1 � unÞ

� �
. ð2Þ

The classical central difference scheme can be found by b2 ¼ 0:5.
The new coordinates x�nþ1 ¼ xn þ u�nþ1 � un of the nodes situated on the contact surface (pad

and beam) are first computed with kn being equal to zero. If b2 ¼ 0:5, the nodal displacements at
time t�nþ1 are obtained so that:

u�nþ1 ¼ Dt2M�1ðrn � KunÞ þ 2un � un�1. (3)

An elementary constraint matrix is formulated for each slave node that has penetrated through
a target surface. The global assembled matrix Gnþ1 permits calculating contact forces kn and
coordinates xnþ1:

kn ¼ fDt2Gnþ1M
�1GT

nþ1g
�1Gnþ1ðxn þ u�nþ1 � unÞ,

unþ1 ¼ u�nþ1 � ðDt2M�1GT
nþ1knÞ. ð4Þ
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Eqs. (4) are solved using the Gauss–Seidel method. During each internal iteration of this
method, as no bonding and a standard Coulomb friction law are considered on each pad slave
node, the contact conditions are expressed as

kn
np0 ðcontactÞ;

jjkt
njjpmjkn

nj;

if jjkt
njjomjkn

nj; vt ¼ 0 ðstickÞ;

if jjkt
njj ¼ mjkn

nj; kt
n � vtp0 ðslipÞ;

(5)

where vt is the relative tangential velocity of a slave node related to the target surface, and n and t

are the normal and tangential vectors defining the contact. The friction law used is the standard
Coulomb friction model without regularization of the tangential stress. It should be noted that in
their work, Ranjith [19] and Simões [17] used a regularized law.
The vibratory mechanisms must take into account the damping phenomena internal to the

beam and pad materials. These are introduced by assuming that they behave linearly and obey
‘‘viscoelasticity’’ laws. The tensor of the viscoelastic stress is thus linked to the deformation tensor
by Hooke’s law, generalized on the basis of a homogeneous and isotropic material:

r ¼ D eþ bnD
de
dt

, (6)

where D represents the matrix of the material behaviour which, in an isotropic and homogeneous
case, depends only on Young’s modulus E and Poisson’s ratio n. e represents the deformation
tensor. Coefficient bn is a characteristic of the material viscosity and can be obtained
experimentally.
3. Pad/beam contact simulation

The PLAST3 code allows us to analyse the instability generated in the contact between the two
bodies (pad and beam) during friction as well as the level of acceleration generated.
Mathematically, this instability is associated with the amplification of small perturbations
from uniform steady sliding to large oscillations that destabilize the steady-state motion. In this
paper, only the results of acceleration will be presented, with the assumption that the
temporal and frequential behaviour of the acceleration is a good indicator of the noise emitted.
Laulagnet [27] presents further developments concerning vibroacoustic transfer mechanisms.
Initially, an increasing force F is applied in direction z until it reaches a pre-selected value
in order to correspond to a uniformly normal displacement (along z) on the top of the pad
(Fig. 1). Application of this force brings the pad into frictional contact with the beam moving
at constant applied speed v. This speed is imposed according to y at the lower nodes of the
beam.
The two deformable bodies are meshed with 3D hexahedral elements with smooth surfaces

(roughness and superficial imperfections are neglected), while no account is taken of thermal and
physicochemical effects. The characteristics of the two bodies (pad and beam) in contact are given
in Table 1.
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Table 1

Beam and pad characteristics

Beam

Young’s modulus E (MPa) 210 000

Poisson’s coefficient n 0.3

Density r (kg/m3) 8000

Width(x)� length(y)� height(z) (mm) 20� 400� 20

Pad

Young’s E modulus (MPa) 7000

Poisson’s coefficient n 0.3

Density r (kg/m3) 2500

Width(x)� length(y)� height(z) (mm) 10� 30� 20

Theoretical contact surface S (mm2) 300
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The boundary conditions under consideration are as follows:
�
 normal force F is applied to all the nodes of the upper surface of the pad; it is applied linearly at
the beginning of the simulation, and stays constant thereafter;

�
 the nodes of the first line of the pad’s upper surface are constrained along axes x and y;

�
 the lower nodes of the beam are constrained along axis z and their speed v is imposed according to y.

With the code in explicit dynamic formulation, the chosen time step Dt is smaller than the
critical time step, which depends on Young’s modulus E, Poisson’s ratio n, density r, damping and
on the length of the mesh elements of the bodies. The aim of these simulations is to show the
influence of each parameter (Young’s modulus, speed, friction coefficient m, force applied and
dimension of the pad) on distinctive scales such as local contact pressure, the kinematics of the
contact surfaces of the two bodies and their acceleration (Fig. 1). Analysis of the latter will enable
us to identify the frequencies at which these vibrations occur and know whether frequential
components exist in the audible range (under 20 kHz). Since acoustic radiation is proportional to
normal nodal acceleration, the latter is therefore presented in the temporal and frequential
domains.
4. Results

4.1. Steady-self pulses

The simulations using the parameters described in Tables 1 and 2 showed instabilities on the
contacting surface of the pad. The model enabled us to highlight the existence of steady-self pulse
solutions in the form of stick–slip–separation, and stick–slip or slip–separation waves propagating
on the contact surface [15,16,21,22,28,29]. These instabilities on the contact surface are the source
of vibrations in the mechanism and thus one of the sources of the noise. A stable state is
characterized by a contact surface where the pad nodes do not separate but remain in sliding
contact on the moving beam. An unstable state is characterized by the formation on the pad
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Table 2

Simulation parameters

Friction coefficient of the Coulomb type m 0.5

Normal force applied to the pad F (N) 135

Theoretical pressure (Pth ¼ F=S) (MPa) 0.45

Beam speed n (m/s) 5

Time step of the simulation Dt (s) 0.025� 10�6

Viscous damping bn 0.5� 10�6

Node displacement/y (mm)
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Fig. 2. (a) Trajectory; (b) J normal and � tangential stresses of a node on the pad contact surface.
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surface of sliding or sticking contact zones or zones separated from the beam surface. In the case
where the state is ‘‘unstable’’, a time period related to the distribution of the mechanical volume
and surface magnitudes is established. The periodic steady state will be dealt with later in the
paper.
Fig. 2a shows the trajectory in the y–z plane of a node situated on the contact surface of the

pad. This trajectory is composed of part (1) in which the node is in sliding or sticking contact in
the direction of the movement. Part (2) is in the direction opposing the movement and
corresponds to an elastic return where the node, initially in contact, separates from the beam
surface. As the friction coefficient and beam speed are constant, the sliding or sticking of a zone
depends on, among other things, the variation of the normal contact stress due to wave
propagation, called dynamic effect [29]. The friction coefficient and beam speed are parameters
that determine instabilities related to the coupling between tangential and normal motion. They
are characterized in the model presented here by the separation or sticking of certain zones of the
pad surface to or from zones of the beam. Threshold values exist for given friction coefficients and
linear speeds above which a periodic steady state (unstable) is generated. This consideration
agrees with the theories of Murakami [13], Eriksson [30,31] and Hultén [6,7] who have shown the
existence of a friction coefficient threshold value above which squealing occurs. This periodic
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steady state is characterized by steady-self pulses propagating in the direction of slip in the more
compliant material, in this case the pad [32,33]. These pulses correspond to traction/compression
stresses in the sliding direction and generated at a speed close to that of the material with the lower
shear wave-speed. Normal contact stress at the contact can (Fig. 2b) therefore reach values 20
times greater than the calculated theoretical pressure (Table 2). This increase is due to the
reduction of the contact area and impact of the surfaces.
Fig. 2b (part 2) shows the separation of the node from the contact surface since the contact

stresses periodically become null. Furthermore, the associated spectrum, which is also periodic,
resembles a shock spectrum (Fig. 3). Part 1 (Fig. 2b) shows the onset of instability as the
amplitude of the stresses increases until it generates an impact phenomenon. Fig. 3 shows the
Fourier transform preceding the separation phenomenon and the frequency of an unstable mode
of the pad at about 20 kHz. As soon as the separation of the node from the beam contact surface
occurs, periodic shocks appear at the interface (Fig. 2b, part 2). By using the Fourier transform
(Fig. 3) it is possible to detect that this periodic shock leads to all the multiples of the fundamental
frequencies of separation at 20 kHz (20, 40, 60, etcy). Finally, these results clearly show that the
instability starts occurring on an unstable mode of the pad at 20 kHz and continues with a shock
phenomenon whose fundamental periodicity is the frequency of the unstable mode. In our
application, a finite element modal analysis of the pad at rest shows the existence of a pad modes
around 20 kHz. This frequency, which corresponds to the unstable mode of the pad obtained in
the temporal analysis, occurs at a friction coefficient greater than 0.2. The modal analysis does not
take into account the beam which is assumed to be rigid since the pad has a much weaker Young’s
modulus than that of the steel beam. To prove this, the modes of the pad alone, with a fixed base,
were calculated, as were those of the pad coupled to the deformable beam at rest. The mode of
interest in the 20 kHz range is presented in Fig. 4.
As can be seen, the frequency and shape are only slightly dependent on the boundary conditions

imposed by the beam. Consequently, for this geometry and kinematic situation, it appears
justifiable to define a pad mode for which the vibrations are mainly concentrated in the pad,
dB
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Fig. 3. Fourier transform of J part 1 and � part 2 (Fig. 2b) of the normal contact stress of a node on the pad contact

surface.
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Fig. 4. Modes of pad: (a) with fixed base (f ¼ 21 164Hz); (b) coupled to the deformable beam (f ¼ 20 838Hz).

Fig. 5. Trajectory of a node situated on the pad contact surface for different beam speeds: (a) J v ¼ 0:1m=s,
’ v ¼ 0:075m=s, & v ¼ 0:05m=s, � v ¼ 0:025m=s; (b) � v ¼ 10m=s, J v ¼ 2:5m=s, ’ v ¼ 0:5m=s, & v ¼ 0:25m=s,
} v ¼ 0:1m=s.
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whereas there are very few in the beam. Moreover, the reason this mode becomes unstable when
the beam moves is because it exhibits a strong displacement component along the normal
direction of the beam (z axis).

4.2. Influence of beam speed

The beam speed was changed for a given Coulomb friction coefficient (m ¼ 0:5) and a normal
applied force (F ¼ 135N, Pth ¼ 0:45MPa). In Fig. 5, for speeds lower than 0.05m/s, the pad is in
full contact with the beam and the instability is of the stick–slip type. The normal contact stress
(Fig. 6) of a node situated on the pad contact surface due to this phenomenon oscillates around a
value of 1.5MPa, i.e. about three times the theoretical pressure. Distribution of the normal and
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tangential contact stresses are addressed in Refs. [23,29]. The separation of the contact surface
from the pad starts to occur for speeds above 0.075m/s. In this case sliding, sticking and
separation of the pad contact zones occur. By increasing the speed, this separation phenomenon
continues to increase until reaching a speed (in our case v ¼ 2:5 m=s) at which the trajectory
stabilises. This phenomenon affects the normal contact stress values, which can reach up to 20
times the theoretical pressure. As for the trajectory, the normal contact stress stabilizes when the
speed increases beyond 2.5m/s. The normal acceleration for the pad face (cf. Fig. 1) is shown in
Fig. 7.
The amplitude of the acceleration increases with speed, as was the case for the normal contact

stress (Fig. 6) and trajectory up to 2.5m/s, and stays constant afterwards. The Fourier transform
of the acceleration of both pad and beam face is produced at the same frequency (Fig. 8) at both
low speeds (stick–slip in the contact interface) and high speeds (stick–slip–separation in the
contact interface).
The frequency of the peaks of these instabilities does not vary with speed, rather it is the

amplitude of the peaks corresponding to the noise level that changes. Strong levels of acceleration
can be observed since the amplitude of vibration for the peak at 20 kHz reaches 90 dB for a speed
of 0.1m/s, corresponding to an acceleration of 10 000g. However, the low accelerations levels are
due to the boundary conditions imposed on the beam. In the braking application where a rotating
circular disc is considered, the levels of acceleration on the two bodies (disc/pad) are similar [23].
A link can be found between the impact frequency given by the normal contact stress and the
frequency of the acceleration spectrums.

4.3. Influence of the theoretical pressure applied to the pad

The theoretical pressure (Pth ¼ F=S) imposed on the pad was changed for a given Coulomb
friction coefficient (m ¼ 0:5) and beam speed (v ¼ 5m=s). For values of theoretical pressures less
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than 2MPa, slip–separation occurs at contact level with a maximum displacement according to z
of 15mm (Fig. 9a). By raising the pressure (Pth values between 2 and 5MPa), the pad contact
zones begin to stick to the beam surface and more significant separations occur. For pressures
above 5MPa the magnitude of separation diminishes until all pad contact surface stick–slip and
separation ceases.
This phenomenon also has repercussions on the normal contact stresses (Fig. 9b) where, for a

theoretical pressure Pth less than 2MPa, there is a regular increase of the normal contact stress
with no change of frequency. As soon as sticking occurs in the pad contact zones (PthX2MPa),
the contact time (sticking+sliding) increases without changing the frequency of impact. As shown
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in Fig. 9c, increasing the theoretical pressure also increases the maximum normal contact stress
which in turn correlates with an increase in the number of pad contact zones that stick. Once
separation ceases (PthX5MPa), the stress varies due to stick–slip type instabilities.
Consequently, the vibrations generated are greater, and so are the amplitudes, as can be seen in

Fig. 10. As in the case of the variation of beam speed, we observed that the imposed theoretical
pressure does not significantly affect the peak frequencies, though it does affect their amplitudes.
In the small pressure range, the increase of these static pressures leads to an increase of the peak
amplitudes. At higher pressures, when the pad contact sticking zone area increases, the amplitude
of the peaks tends to stabilize as do the maximal normal contact stresses.

4.4. Influence of Coulomb’s friction coefficient m

Coulomb’s friction coefficient at the surface of the beam/pad contact was changed for an
imposed normal force (F ¼ 135N, Pth ¼ 0:45N) and a given speed (v ¼ 5m=s). Its influence on
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J Pth ¼ 5MPa, ’ Pth ¼ 1:35MPa, & Pth ¼ 0:9MPa, } Pth ¼ 0:45MPa.
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trajectory and normal contact stress is shown in Figs. 11 and 12 for a node situated on the pad
contact surface.
It should be noted that a threshold friction coefficient exists above which instabilities are

generated at the contact surface. For low friction coefficients the pad slides (constant contact
stresses) on the beam and no instability phenomenon occurs (Fig. 11b). Above a friction value of
0.2, instabilities (stick–slip–separation of the contact surfaces) begin to occur and the normal
contact stress increases (Fig. 12). The absence of instabilities indicates low acceleration values
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either on the pad or on the beam. Once instabilities occur, the amplitude of acceleration increases
at the same time as the friction coefficient. Fig. 13 shows the Fourier transform obtained for
different values of Coulomb’s friction coefficient.
A peak of low amplitude and a frequency of about 5 kHz are reached for low friction coefficient

values (mp0:2) where there are no instabilities. This spectrum corresponds to that of a sliding
noise generated by the pad surface in stationary sliding contact on the moving beam surface.
The spectrum’s low amplitude and frequency depend on the mechanical and geometrical
characteristics of the two materials in contact.
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Instabilities generate steady-self pulses propagation at high frequencies in our model. The
highest peak in this application is about 20 kHz, which, as in previous cases, corresponds to the
frequency of impacts between the contact surfaces. Above this friction coefficient threshold value,
its increase coincides with that of the acceleration amplitude and to a decrease in the frequency of
the peaks.

4.5. Influence of the pad dimensions

The pad dimensions were changed from 10� 30� 20 to 10� 15� 10mm (width�
length� height) for a given speed (v ¼ 5m=s) and an imposed normal force (F ¼ 135N,
Pth ¼ 0:45N). Reducing pad dimensions leads to reduced separations (from 4 to 1 mm) and
normal contact stress (9–5MPa) of the pad nodes in contact with the beam and an increase of
impact frequency (Fig. 14).
Using a smaller pad leads to an increase in the frequency of the peaks, from 20 to 40 kHz. The

spectrum therefore moves towards high frequencies (Fig. 15). Instability then occurs for a pad
mode of 40 kHz.

4.6. Influence of Young’s modulus

Simulations of the pad with different Young’s moduli were performed for an imposed normal
force (F ¼ 135N, Pth ¼ 0:45MPa) and a given speed (v ¼ 5m=s). The trajectory and normal
contact stress of a node of the contact surface of the pad are shown in Fig. 16.
It can be seen that there is a threshold value for Young’s modulus (E450 000MPa) above

which instability ceases. By increasing Young’s modulus, the separation decreases until it
disappears and the situation changes from unstable to stable when the pad slides on the beam. As
demonstrated by Adams [15,16], these instabilities are not possible for certain combinations of
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materials. Reducing separation (increased Young’s modulus) in the unstable zone leads to a
reduction of normal contact stress on the one hand, but an increase of impact frequency on the
other. The Fourier transform of the acceleration of a pad face whose amplitude is decreased by
increasing Young’s modulus is shown in Fig. 17.
As for the normal contact stress, lower amplitudes and higher frequencies can be obtained by

increasing Young’s modulus. The spectrum displaces towards high frequencies and a the
amplitude is attenuated rapidly in cases where instability exists. These instabilities all start from a
characteristic pad mode that changes as a function of Young’s modulus. A stable situation of pure
sliding exists above the threshold value, the former being characterized by peaks of low amplitude
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that are related to sliding noise. Finally the rigidity of the pad contributes towards decreasing the
both instabilities and the squealing phenomenon. Obviously, a Young’s modulus of 2000MPa
makes it possible to predict a peak acceleration of about 10 kHz, and thus perceptible to the
human ear.
5. Conclusions

This article has focused in particular on the influence of the main parameters involved in the
instability phenomena generated by beam/pad friction contacts. The simulation of two bodies
(pad and beam) sliding with a constant friction coefficient and a smooth surface has highlighted
the occurrence of vibrations. The dynamic coupling between the volume and surface of the
contact bodies leads to a contact surface composed locally of zones in contact and separated
zones. Local separation of the pad and beam contact surface, leading to local normal impacts and
increased high vibration may involve squealing. Apart from the friction coefficient, an essential
parameter capable of activating instability, we have demonstrated the influence of beam speed, the
contact pressure applied, the dimension of the pad and its Young’s modulus. In the case of the
model used here, rigidity contributes towards attenuating the instabilities and therefore the noise
radiated. It was shown that the instability starts at a pad mode. In our model, this mode can be
estimated by a finite element modal analysis of the pad while neglecting the beam, which
represents a clamped boundary condition. During instability, steady-self pulses in the form of
stick–slip–separation cause a periodic impact whose fundamental frequency remains that of an
unstable mode at the source of the vibratory divergence. This impact then occurs at the interface,
thus periodically separating the contact surfaces from each other. The Fourier transform of the
squealing noise shows a spectrum of peaks whose harmonic diversity depends on the separation of
the contact node and on the temporal evolution of the normal contact stress.
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